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Abstract. The east-west directional anisotropy in clock rate observed in the Hafele-Keating experiment
with circumnavigation atomic clocks is commonly ascribed to the special relativity. In this investigation,
based on the local-ether wave equation, an entirely different interpretation of this anisotropy is presented
by showing that the clock-rate variation can originate from an intrinsic quantum property of the atom. For
a harmonic-like wavefunction, the local-ether wave equation leads to a first-order time evolution equation
similar to Schrödinger’s equation. However, the time derivative incorporates a speed-dependent factor sim-
ilar to that in the Lorentz mass-variation law. Consequently, the quantum energy, the transition frequency,
and hence the atomic clock rate decrease with the atom speed by this speed-dependent mass-variation
factor. According to the local-ether model, the speed is referred specifically to a geocentric or heliocentric
inertial frame for an earthbound or interplanetary clock, respectively. It is shown that this restriction on
reference frame is actually in accord with the various experimental results of the anisotropy and the clock-
rate difference in the Hafele-Keating experiment, the synchronism and the clock-rate adjustment in GPS
(global positioning system), and of the spatial isotropy in the Hughes-Drever experiment. Moreover, the
switching of the unique reference frame is in accord with the frequency-shift formulas adopted in earth-
bound and interplanetary spacecraft microwave links. Meanwhile, the local-ether model predicts a constant
deviation in frequency shift from the calculated result reported in an interplanetary spacecraft link. This
discrepancy then provides a means to test the local-ether wave equation.

PACS. 03.65.-w Quantum mechanics – 03.65.Pm Relativistic wave equations – 04.60.-m Quantum gravity

1 Introduction

From the experiment of circumnavigation atomic clocks by
Hafele and Keating in 1971, it has been verified that the
tick rate of an atomic clock depends on its speed. In this
experiment, cesium atomic clocks were flown around the
Earth, first eastward and then westward. After each trip,
the circumnavigation clocks were compared with a geo-
stationary one. It has been found that the atomic clocks
flying westward tick at a faster rate than a geostationary
one, while they tick at a slower rate when flying east-
ward [1,2]. Quantitatively, it has been found that when
the atomic clock is moving at a speed v, its tick rate slows
down by a factor of

√
1− v2/c2, where c is the speed of

light. It is noted that this factor is just the inverse of
the Lorentz mass-variation factor which in turn has been
demonstrated in the charge-mass ratio of high-energy elec-
trons in the famous Bucherer’s experiment [3].

For a long time, the overwhelmingly dominant inter-
pretation of this speed-dependent variation in clock rate
is ascribed [1,2] to a second-order Doppler effect in the
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propagation of electromagnetic wave between a transmit-
ter and a receiver in relative motion, which in turn is
derived in Einstein’s original paper on the special rela-
tivity from a kinematical viewpoint based on the Lorentz
transformation of space and time [4]. In this investigation,
an entirely different interpretation of the speed-dependent
atomic clock rate is presented by showing that the clock
rate together with its speed-dependence can be an intrinsic
quantum property of matter wave bounded in the associ-
ated atom.

Recently, we have presented the local-ether model of
wave propagation [5]. That is, electromagnetic wave can
be viewed as to propagate via a medium like the ether.
However, the ether is not universal. It is supposed that
in the region under sufficient influence of the gravity due
to the Earth, the Sun, or another celestial body, there
forms a local ether which in turn moves with the gravita-
tional potential of the respective body. Each individual lo-
cal ether is finite in extent and may be wholly immersed in
another local ether of larger extent. Thus the local ethers
may form a multiple-level hierarchy. For earthbound wave,
the medium is the earth local ether which is stationary in
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an ECI (earth-centered inertial) frame, while the sun local
ether for interplanetary wave is stationary in a heliocentric
inertial frame. Consequently, for a geostationary observer,
an earthbound wave depends on earth’s rotation but is
entirely independent of earth’s orbital motion around the
Sun or whatever, while an interplanetary wave depends on
the orbital motion around the Sun as well as on the rota-
tion. This local-ether model has been adopted to account
for a wide variety of propagation phenomena, particularly
the GPS (global positioning system) Sagnac correction,
the time comparison by intercontinental microwave link,
and the interplanetary radar echo time [5].

Further, matter wave is supposed to follow the local-
ether model and then be governed by a wave equation.
Under the condition of low particle speed, the local-ether
wave equation leads to a first-order time evolution equa-
tion, which is similar to the famous Schrödinger’s equa-
tion [6,7]. From the evolution equation, the velocity and
the acceleration of a particle can be derived in a quantum-
mechanical approach. Under the influence of the electric
scalar and the gravitational potentials, a unified quantum
theory of the electromagnetic and the gravitational forces
in conjunction with the identity of inertial and gravita-
tional mass has been derived [6,7].

In this investigation, the restriction on particle speed
is removed. Then the corresponding evolution equation,
particle velocity, and speed-dependent mass are derived.
Thereafter, the effects of the speed-dependent mass and
the gravitational potential on the energies of quantum
states of matter wave bounded in atom are explored and
the associated speed- and gravitation-dependent transi-
tion frequency is used to account for the clock-rate varia-
tions in the Hafele-Keating experiment, GPS, earthbound
and interplanetary spacecraft microwave links, and in the
Hughes-Drever experiment in a consistent way.

2 Local-ether wave equation and evolution
equation

It is supposed that matter wave associated with a particle
follows the local-ether model. Under the electrical scalar
potential Φ due to charged particles and the gravitational
potential Φg due to a celestial body, the matter wave Ψ as-
sociated with a particle of charge q and natural frequency
ω0 is supposed to be governed by the local-ether wave
equation proposed to be{

1
ng
∇2 − ng

c2
∂2

∂t2

}
Ψ(r, t) =

ω2
0

c2

{
1 +

2
~ω0

qΦ(r, t)
}
Ψ(r, t), (1)

where the gravitational index ng = 1 + 2Φg/c
2, Φg(r) =

GM/r, G is the gravitational constant, and r (= |r|) is the
radial distance away from the center of the celestial body
of mass M . The position vector r and the time derivative

in this wave equation are referred uniquely to the local-
ether frame associated with the celestial body, which is
a geocentric or a heliocentric inertial frame for an earth-
bound or an interplanetary particle, respectively. This fea-
ture is simply analogous to the fact that the position vec-
tor and the time derivative in the wave equation governing
the mechanical wave on a violin string are referred specif-
ically to the frame in which the violin is stationary. This
local-ether wave equation made its debut in [7].

In the absence of the potentials, the local-ether wave
equation reduces to a form looks like the Klein-Gordan
equation for a free particle [8]. Further, if the natural fre-
quency is zero, the wave equation reduces to that for elec-
tromagnetic wave. From the wave equation it is seen that
if the potentials and the spatial variation of the wavefunc-
tion are weak, the wavefunction tends to oscillate at the
natural frequency ω0. Under the influence of the poten-
tials, which are functions of space, the spatial variation of
the wavefunction tends to change. Accordingly, its tempo-
ral variation tends to increase.

Suppose that the spatial variation of the wavefunction
Ψ is close to a space harmonic eik·r, where k is a constant
known as the propagation vector. Thus the wavefunction
can be given as Ψ(r, t) = ψ̃(r, t)eik·r and then its Laplacian
becomes

∇2Ψ(r, t) ={
∇2ψ̃(r, t) + i2k · ∇ψ̃(r, t)− k2ψ̃(r, t)

}
eik·r. (2)

Thereby, the local-ether wave equation becomes{
∇2 − 1

c2
∂2

∂t2

}
ψ̃(r, t) =

ω2

c2
ψ̃(r, t) +

2ω0

~c2
qΦψ̃(r, t)

−i2k · ∇ψ̃(r, t), (3)

where the gravitational potential is omitted for simplic-
ity and its effect will be considered later. The angular
frequency ω combines the natural frequency ω0 and the
propagation constant k as

ω2 = ω2
0 + c2k2. (4)

The spatial variation of ψ̃ should be much weaker than
that of Ψ . Further, if the potential Φ as well as the spatial
rate of change of ψ̃ is relatively weak, the temporal vari-
ation of ψ̃ or Ψ can be expected to be close to the time
harmonic e−iωt. Thus the wavefunction can be given as
ψ̃(r, t) = ψ(r, t)e−iωt and then its second time derivative
becomes

∂2

∂t2
ψ̃(r, t) ={

∂2

∂t2
ψ(r, t)− i2ω

∂

∂t
ψ(r, t)− ω2ψ(r, t)

}
e−iωt. (5)

As the temporal variation of ψ is relatively weak, the sec-
ond derivative ∂2ψ/∂t2 can be neglected.
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Thereby, the local-ether wave equation can be
approximated to the first-order time evolution equation

∂

∂t
ψ(r, t) = i

c2

2ω
∇2ψ(r, t)− i

ω0

~ω
qΦψ(r, t)

−c
2

ω
k · ∇ψ(r, t). (6)

Note that the major term with ω2ψ cancels out. The
wavefunction ψ should have a greatly reduced variation in
space and time, since the space- and time-harmonic term
eik·re−iωt has been factored out from the wavefunction Ψ ,
which in turn is close to this harmonic. The wavefunction
Ψ and the reduced wavefunction ψ are related to each
other as

Ψ(r, t) = ψ(r, t)eik·re−iωt. (7)

It is noted that by virtue of the natural frequency, such a
harmonic-like wavefunction Ψ becomes dispersive as rep-
resented by the dispersion relation (4).

According to the wave equation or the evolution equa-
tion in conjunction with the associated initial conditions,
the wavefunction Ψ or the reduced wavefunction ψ as a
function of space and time can be determined. The evo-
lution equation involves only first-order time derivative
and is simpler. Further, some general formulas represent-
ing physical quantities, such as velocity and acceleration,
of the associated particle can be derived from the evolu-
tion equation, as in the treatment based on Schrödinger’s
equation. However, the applicability of the evolution equa-
tion is more restricted, since the spatial and the temporal
variations in the wavefunction Ψ tend to change with time
and hence the propagation vector k and the angular fre-
quency ω of the factored-out harmonic could need to be
updated frequently to maintain the accuracy.

3 Particle velocity and speed-dependent mass

As in quantum mechanics, the physical quantity repre-
sented by an operator O is supposed to be given by the
expectation value of the operator evaluated in terms of the
reduced wavefunction ψ as 〈O〉 =

∫
ψ∗Oψdr. Thus the ve-

locity of a particle is given by the time derivative of the
expectation value of its position vector as v = d 〈r〉 /dt,
where the position vector r and hence the velocity v are
referred to the local-ether frame. By expanding the local-
ether-frame time derivative of expectation value of the
time-independent operator of the position vector accord-
ing to the evolution equation (6), it can be shown that the
particle velocity is given by the expectation value of the
del operator as

v = −i
c2

ω
〈∇〉+

c2

ω
k, (8)

where the wavefunction is supposed to be normalized such
that

∫
ψ∗ψdr = 1. It is easy to see that the expectation

value 〈∇〉 in ψ is related to the expectation value 〈∇〉Ψ in
Ψ as

〈∇〉Ψ = 〈∇〉+ ik, (9)

where 〈O〉Ψ =
∫
Ψ∗OΨdr denotes the expectation value

evaluated in terms of wavefunction Ψ . Thereby, the veloc-
ity can be given by

v = −i
c2

ω
〈∇〉Ψ . (10)

It is noted that the particle velocity with respect to the
local-ether frame is proportional to the spatial rate of
change of the wavefunction Ψ (rather than of the reduced
wavefunction ψ) and to the inverse of the temporal rate
of change of Ψ .

When the particle speed is low enough, the propaga-
tion vector k in the factored-out harmonic can be chosen
to be zero and hence the angular frequency ω becomes the
natural frequency ω0. Thereby, the evolution equation for
a slowly-moving particle reduces to

∂

∂t
ψ(r, t) = i

c2

2ω0
∇2ψ(r, t) − i

1
~
qΦψ(r, t). (11)

From this evolution equation, it has been pointed out in
[7] that the acceleration of a low-speed particle under the
influence of the electric scalar potential is given by

a = − c2

~ω0
q∇Φ, (12)

where the acceleration due to the gravitational poten-
tial (∇Φg) is omitted. It is noted that the acceleration
is inversely proportional to ω0. Then, from Newton’s sec-
ond law of motion and the well-known electrostatic force
F = −q∇Φ, it has been pointed out that the natural fre-
quency ω0 multiplied by the constant (~/c2) is just the
inertial mass of the particle under the influence of the elec-
tric scalar potential Φ, as the particle is at rest or moves
at a low speed with respect to the local-ether frame. That
is, the natural frequency ω0 is related to the rest mass m0

of the particle as

m0 =
~
c2
ω0. (13)

This simple frequency-mass relation unveils the physical
origin of mass as a wave motion.

When the spatial variation of wavefunction Ψ is quite
close to the harmonic eik·r, the expectation value 〈∇〉 ap-
proaches zero and the expectation value 〈∇〉Ψ approaches
ik. Thus the velocity formula (10) reduces to the form of

k =
ω

c2
v. (14)

This propagation vector-velocity relation is valid even
when the particle speed is high. It is noted that the prop-
agation vector k is linearly proportional to the velocity v
with the angular frequency ω divided by c2 as the ratio.
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This formula is identical to that derived from the disper-
sion relation of a wave packet by evaluating its group ve-
locity discussed in [8]. Thus, for such a harmonic-like wave
packet Ψ , the expectation value 〈∇〉Ψ is proportional to
the group velocity. That is, the spatial rate of change and
the group velocity of a wave packet are closely related
properties of wave motion.

Further, on substituting the preceding relation back
into the dispersion relation (4), the angular frequency can
be expressed in terms of the particle speed v as

ω = ω0
1√

1− v2/c2
, (15)

where speed v is referred to the local-ether frame. It
is seen that the angular frequency is the natural fre-
quency times the speed-dependent factor. According to
this speed-dependent frequency and the frequency-mass
relation (13), the speed-dependent mass m is defined in
terms of the rest mass m0 as

m = m0
1√

1− v2/c2
· (16)

Then, in terms of the speed-dependent mass m, the an-
gular frequency and the propagation vector of the matter
wave Ψ can be given by

~ω = mc2 (17)

and

~k = mv, (18)

where the propagation vector formula (14) has been made
used of. It is noted that the preceding three formulas
of speed-dependent mass, angular frequency, and prop-
agation vector are just the famous de Broglie postulates
for matter wave in conjunction with the Lorentz mass-
variation law, if the reference frame of the particle ve-
locity v is ignored. The speed-dependent wavelength has
been demonstrated in the Davisson-Germer experiment,
the double-slit diffraction, and the Sagnac effect of mat-
ter wave. In these earthbound experiments, the particle
velocity is expected to be referred to an ECI frame. As the
speeds of the associated particles are much higher than the
linear speed due to earth’s rotation, the local-ether model
is substantially in accord with those experiments adopting
the laboratory frame.

4 Speed-dependent quantum energy

In terms of the speed-dependent mass m, the time evolu-
tion equation (6) governing the reduced wavefunction ψ
can be rewritten as

i~
∂

∂t
ψ(r, t) = − ~

2

2m
∇2ψ(r, t) +

m0

m
qΦψ(r, t)

−i
~2

m
k · ∇ψ(r, t), (19)

where the time derivative is referred to the local-ether
frame. Note that the whole interaction term decreases
with increasing mass as (m0/m)qΦ. Ignoring the reference
frame, this evolution equation reduces to Schrödinger’s
equation when k = 0 and hence m = m0.

Consider an atom, a molecule, or an ion which is mov-
ing at a velocity va with respect to the local-ether frame.
It is expected that the electric scalar potential Φ due to
the nucleus and electrons in an atom will move with this
atom. Accordingly, the potential is stationary in the atom
frame with respect to which the atom is stationary, while it
is moving in the local-ether frame. Under Galilean trans-
formations, the potential moving with the atom can be
written as Φ(r) or as Φ(r−vat), where the position vector
r is referred to the atom or to the local-ether frame, respec-
tively. The average value of the velocity of a particle (elec-
tron or nucleon) bounded in the atom should be identical
to the atom velocity va; otherwise, the particle tends to es-
cape from the atom. Thus the spatial and temporal varia-
tion of the wavefunction of the bounded particle can be ex-
pected to be close to the harmonic eik·re−iωt and then the
reduced wavefunction is governed by the preceding evolu-
tion equation, where k = mva/~, m = m0/

√
1− v2

a/c
2,

the potential is given by Φ(r−vat), and the position vector
r is referred to the local-ether frame.

We next go on to rearrange the evolution equation to
express it in the atom frame, instead of the local-ether
frame. To begin with, it is noted that the last term
in (19) can be written as (~2/m)k · ∇ = ~va · ∇. The
time derivative observed in the atom frame, denoted as
(∂/∂t)a, is generally different from the derivative ∂/∂t
observed in the local-ether frame. Based on Galilean
transformations, the time derivatives ∂/∂t and (∂/∂t)a

are understood to be taken under constant r and (r−vat),
respectively, as r is referred to the local-ether frame. It
is known that for an arbitrary function f of space and
time [19],

(
∂f

∂t

)
a

=
∂f

∂t
+ va · ∇f. (20)

Thereby, for a particle bounded in a moving atom, the
time evolution equation observed in the atom frame
becomes

i~
∂

∂t
ψ(r, t) = − ~

2

2m
∇2ψ(r, t) +

m0

m
qΦ(r)ψ(r, t), (21)

where the position vector r and hence the time derivative
are referred to the atom frame, instead of the local-ether
frame. It is noted that the mass associated with the Lapla-
cian is the speed-dependent mass, instead of the rest mass.
Moreover, the interaction term incorporates an extra mul-
tiplying term of m0/m, inverse to the mass-variation fac-
tor. It is also noted that the time evolution equation as
well as the potential is independent of the movement of
atom if the equation is observed in the atom frame and the
mass variation is neglected, as assumed so tacitly in com-
mon practice. In other words, in applying Schrödinger’s
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equation with a stationary potential to deal with quan-
tum states in an atom, one has actually adopted the atom
frame.

As the matter wave is bounded in an atom, the tempo-
ral variation of the reduced wavefunction itself is supposed
to be time harmonic as ψ(r, t) = ψ(r)e−iω̃t, as a conse-
quence of resonance. Then the quantity ~(ω + ω̃) will be
the energy of quantum state of the bounded matter wave.
The minor part ~ω̃ tends to be different in a different
quantum state, while the major part ~ω is identical in all
the states. Then the preceding evolution equation leads to
the time-independent Helmholtz equation

− ~2

2m0
∇2ψ(r) + qΦ(r)ψ(r) =

m

m0
~ω̃ψ(r). (22)

This equation looks like the time-independent equation
derived from (11) for a particle moving slowly in the
local-ether frame, in spite that the position vector r
here is referred specifically to the atom frame and that
the mass-variation factor m/m0 connects to ~ω̃. Conse-
quently, the solutions for the eigenfunction ψ and the
eigenvalue ~ω̃(m/m0) of this equation in the atom frame
will be independent of the atom speed va. Accordingly, as
compared to that of a stationary atom, the minor energy
~ω̃ of each quantum state will decrease with the inverse
of the mass-variation factor, when the atom is moving at
speed va with respect to the local-ether frame. Meanwhile,
the major energy ~ω for a moving atom increases by this
factor.

The frequency of light emitted from or absorbed by
an atom is known to be equal to the transition frequency
which in turn is proportional to the difference between
the energies of two involved quantum states. As the
major energy ~ω is identical in all the states, its effect on
the transition frequency cancels out. Thus the transition
frequency f is determined by the minor energy ~ω̃ and
then is inversely proportional to the speed-dependent
mass m. Precisely, the transition frequency decreases
with increasing atom speed by the mass-variation factor as

f = f0

√
1− v2

a/c
2, (23)

where f0 is the rest transition frequency of the atom when
it is stationary in the local-ether frame, the atom speed
va is referred specifically to the local-ether frame, and the
transition frequencies are observed in the atom frame such
that the Doppler effect due to the relative motion between
source and receiver vanishes. Speed-dependent frequency
of this form (but of different physical meaning and refer-
ence frame) was first introduced by Fitzgerald, Lorentz,
and Larmor before the advent of the special relativity [10]
and was later derived by assuming the length contrac-
tion [11] or the time dilation [12]. According to the local-
ether model, the transition frequency of an earthbound
atom depends on its speed with respect to a geocentric
inertial frame. Meanwhile, for an atom onboard an inter-
planetary spacecraft, the transition frequency depends on
the speed with respect to a heliocentric one.

5 Reexamination of experiments
with atomic clock rates

The clock rate of an atomic clock is determined by the
transition frequency between two quantum states. If the
quantum states is directly due to the electric scalar po-
tential, then the clock rate definitely slows down by the
mass-variation effect. However, the quantum states can
be modified by some other mechanisms, such as the hy-
perfine splitting due to the spin-spin interaction between
electron and nucleon in the cesium atomic clock [13] or
the hydrogen maser [14] discussed in this section. Al-
though the spin can not be treated by the local-ether
wave equation, it is expected that this interaction leads to
an equation similar to (22), except a modification in the
interaction term qΦ. Thus the transition frequency and
hence the clock rate also decrease by the speed-dependent
mass-variation factor. On the other hand, different depen-
dences of transition frequency on mass or speed caused by
some other interactions are not precluded. As the precision
in the experiments to detect the speed-dependent effect
is high, the gravitational effect often becomes significant
and hence is also taken into consideration. Thereafter, the
derived gravitation- and speed-dependent transition fre-
quency formula is used to account for the atomic clocks in
the Hafele-Keating experiment, GPS, and in earthbound
and interplanetary spacecraft microwave links, which are
commonly ascribed to the general and the special relativ-
ity.

5.1 Gravitation- and speed-dependent transition
frequency

If the gravitational effect is taken into account, the local-
ether wave equation (1) leads to the algebraic equation for
a matter wave bounded in a moving atom as

(ω + ω̃)2 =

ω2
0

{
1 +

[(
1
ng
−1
)
− c2

n2
gω

2
0

〈
∇2
〉
Ψ

+
1
ng

2
~ω0
〈qΦ〉

]}
,

(24)

where wavefunction Ψ(r, t) = ψ(r)eik·re−i(ω+ω̃)t, k =
mva/~, and the wavefunction is supposed to be nor-
malized. Then an expansion like (2) leads to

〈
∇2
〉
Ψ

=
−k2 +

〈
∇2
〉
, where we have made use of that a bounded

wavefunction ψ is real and hence the expectation value
〈∇〉 = 0. When the gravitational potential is weak, the
perturbation method can be applied. Thereby, the angular
frequency can be evaluated in terms of the corresponding
wavefunction in the absence of gravitational potential [15].
Consider the case of atomic clocks which are associated
with the spin-spin interaction between wavefunctions of
identical spatial distribution but of different spin states.
Then the state transition is associated only with the in-
teraction qΦ.

Suppose that both the potential Φ and the spatial rate
of change of Ψ as well as the potential Φg are weak. Then,



236 The European Physical Journal B

by evaluating the square root of the right-hand side of the
preceding frequency formula with binomial expansion to
the second order and retaining only those terms associ-
ated with the interaction qΦ, it can be shown that due to
the gravitational and the speed-dependent mass-variation
effects, the transition frequency f decreases as

f = f0

(
1− Φg

c2
− v2

a

2c2

)
+ fex, (25)

where f0 is the rest transition frequency of the atom when
it is stationary in the local-ether frame and at a zero grav-
itational potential and fex denotes extra minor contribu-
tions from the spatial variation of ψ and the second-order
effect of the interaction. As the atom speed va has been
supposed to be much lower than c, it is seen that the
speed-dependence in the preceding frequency formula is
in accord with (23). When the restriction on the atom
speed is removed, the transition frequency is expected to
given by f = f0

√
1− v2

a/c
2(1 − Φg/c

2). Quantitatively,
frequency f0 is given by

f0 =
q

2π~

∫
(ψaΦψa − ψbΦψb)dr, (26)

where ψa and ψb are the reduced wavefunctions of the two
quantum states involved in the transition. Based on the
perturbation method, ψa and ψb can be replaced with the
corresponding solutions of the Helmholtz equation (22),
where the gravitational potential is omitted. Recall that
these solutions are independent of the atom speed. It is
noted that according to the local-ether wave equation, the
gravitational redshift as well as the speed-dependent vari-
ation in transition frequency is associated with quantum
nature of bounded matter wave.

5.2 Clock-rate difference in Hafele-Keating experiment

Consider the atomic clocks onboard a circumnavigating
aircraft in the Hafele-Keating experiment. According to
the local-ether model, the speed in the mass-variation fac-
tor is referred specifically to an ECI frame, rather than to
the ground or any other frame. Thus this speed is de-
pendent on earth’s rotation and latitude, but is entirely
independent of the orbital motion of the Earth around the
Sun or whatever. When the aircraft is flying westward, the
atomic clock tends to have a lower speed with respect to
an ECI frame than a geostationary one. Consequently, the
atomic clock flying westward ticks at a faster rate than a
geostationary one, while the one flying eastward ticks at a
slower rate. Thereby, earth’s rotation leads to an east-west
directional anisotropy in the atomic clock rate.

Quantitatively, according to the local-ether model, the
speed that determines the tick rate of the atomic clock
onboard an aircraft flying at a ground speed vf east- or
westward is given by the sum vE + vf , where vE = 464×
cos θl m/sec is the speed of ground due to earth’s rotation,
θl is the latitude, and vf is positive when the clock is flown
eastward and negative when westward. By taking both the

speed- and the gravitation-dependent effects into account,
the fractional difference in transition frequency between
the flying and the geostationary atomic clocks at identical
latitude is given by the local-ether model as

4f
f0

= −2vEvf + v2
f

2c2
+
MG

c2R2
E

ha, (27)

whereM and RE are the mass and the radius of the Earth,
respectively, and ha is the altitude of the aircraft.

In the Hafele-Keating experiment, based on the
recorded flight data of aircraft ground speed, latitude, al-
titude, and of clock time, the difference in clock time be-
tween the flying and the geostationary clocks was calcu-
lated by numerical integration for each circumnavigation
trip in either direction. The formula for calculation pre-
sented in [1] is identical to (27), although it is based on an
entirely different theory of the special and the general rel-
ativity. Thereby, the calculated clock-time difference for
each circumnavigation trip east- or westward is −40 or
275 ns, respectively, which has been found to agree with
the experimental results [1]. Thus it is evident that the
local-ether model is in accord with the east-west direc-
tional anisotropy in atomic clock rate demonstrated in
the Hafele-Keating experiment.

5.3 Clock-rate adjustment in GPS

The GPS employs about 24 half-synchronous satellites
carrying highly precise and synchronized cesium and ru-
bidium atomic clocks around six nearly circular orbits [13].
It is known that the various GPS atomic clocks keep a
high synchronism within a few ns among themselves over
a long duration of time (one day) before routine clock cor-
rection [13]. As the orbits are nearly circular, the various
GPS atomic clocks move at nearly identical speeds with
respect to an ECI frame. Therefore, the local-ether model
is in accord with the high synchronism among the GPS
atomic clocks. Further, to keep the GPS atomic clocks
synchronous with the ground clocks, the speed-dependent
mass-variation factor together with the gravitational red-
shift has been treated by purposely adjusting the atomic
clock rate before the launch of satellites [13,16].

Quantitatively, the radius rH of the half-synchronous
orbits is about 26,600 km. Hence, the various clocks move
virtually at an identical speed of va =

√
GM/rH with re-

spect to an ECI frame. Meanwhile, the clock stationary
on the ground has the speed vE due to earth’s rotation.
This speed is much lower than that of GPS satellites. Thus
the mass-variation effect tends to slow down the atomic
clock rate after launch. On the contrary, as the satellite
is launched to the orbit of a lower gravitational potential,
the gravitational effect tends to speed up the clock rate.
By taking both the speed- and the gravitation-dependent
effects into account, the fractional shift in transition fre-
quency after launch to a half-synchronous orbit is given
by the local-ether model as

4f
f0

=
(
v2

E

2c2
− v2

a

2c2

)
+
MG

c2

(
1
rL
− 1
rH

)
, (28)
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where rL and rH denote the geocentric distances of GPS
satellite before and after its launch, respectively.

By taking vE = 350 m/sec, va = 3870 m/sec (=
1.29 × 10−5 c), MG/c2 = 4.43 mm, rL = 6380 km,
and rH = 26600 km, the fractional shift is 4.45 × 10−10,
to which the mass-variation and the gravitational effects
contribute −8.3 × 10−11 and 5.28 × 10−10, respectively.
The GPS microwave L1 carrier is operated at a frequency
of 1575.42 MHz, which is generated by multiplying the
output of the atomic clock at 10.23 MHz by a factor of
154 [17]. This carrier is then modulated by a series of dig-
ital data at a rate of 10.23 Mbit/sec, which contain the
codes for positioning. In GPS the received data rate is de-
signed to be 10.23 Mbit/sec. Thus the atomic clock rate
is actually adjusted a little slower to 10.22999999545(=
10.23−4.55×10−9) MHz before the launch [16]. It is seen
that the calculated fractional frequency shift agrees excel-
lently with the practice of clock-rate adjustment in GPS.
If the clock-rate shift is not compensated, it tends to cause
a synchronism error of as large as 38 µs in one day.

It is noted that the speed- and gravitation-dependent
frequency shifts derived from the local-ether wave equa-
tion are identical to those presented in [18] based on
the special and the general relativity, respectively. How-
ever, the mechanism of frequency shift and its conse-
quence are different. According to the local-ether wave
equation, the frequency shifts due to the gravitational
and the mass-variation effects originate from an intrinsic
quantum property of matter wave bounded in atom. Af-
ter the launch to the orbit, the atomic clock rate increases
slightly to 10.23 MHz. Thereafter, during the entire prop-
agation from the satellite to the ground, the carrier fre-
quency and the data rate remain fixed at 1575.42 MHz
and 10.23 Mbit/sec, respectively, when the Doppler effect
is omitted for simplicity. Thus over a duration of time, the
total number of bits of data received on the ground tends
to be identical to that transmitted from the satellite, as
expected intuitively.

5.4 Frequency shift in earthbound and interplanetary
spacecraft microwave links

Consider the frequency-shift experiment conducting in a
spacecraft microwave link, where a microwave is generated
from a stable source onboard a spacecraft, received by a
ground station, and then compared to a reference signal
from another stable source at the station. As the space-
craft moves at a high speed in a vast domain, the Doppler,
the mass-variation, and the gravitational effects are incor-
porated in the frequency shift between the received and
the reference signals.

Suppose the two microwave sources at the spacecraft
and the ground station are of identical rest transition fre-
quency f0. According to the local-ether model, the fre-
quency shift due to the speed-dependent mass-variation
effect is given by the difference between the two transi-
tion frequencies as

4f = f0

(
v2

E − v2
sc

)
/2c2, (29)

where vsc and vE are the speeds of the spacecraft and
the ground station with respect to their respective local-
ether frames. Speed vsc is referred to a geocentric or a
heliocentric inertial frame, depending on the location of
the spacecraft being earthbound or interplanetary, respec-
tively. Further, if the spacecraft comes close to a planet
enough, the reference frame of speed vsc should switch to
the local ether associated with that planet. On the other
hand, speed vE has nothing to do with the location of the
spacecraft and is referred uniquely to an ECI frame, both
for the earthbound and the extraterrestrial cases.

Consider the spacecraft microwave link by
Vessot et al., where a microwave was generated from a
stable hydrogen maser at 1.420 GHz onboard a spacecraft
and was received by a ground station with a second
identical maser [14,19,20]. By using microwave mixers
at the ground station, the frequency shift between waves
can be measured with high precision. The spacecraft was
launched nearly vertically to the apogee at an altitude
of 10,000 km, then fell down, and finally impacted upon
ocean. The frequency shift given by the preceding formula
with both vE and vsc being referred to an ECI frame
agrees with that presented in this earthbound spacecraft
link (in conjunction with the frequency shifts due to the
Doppler and the gravitational effects).

However, for an interplanetary case, the local-ether
model leads to that speeds vsc and vE in (29) are referred
to a heliocentric and a geocentric inertial frames, respec-
tively. Consider the spacecraft microwave link by Krisher
et al., where a spacecraft ventured on an extraterrestrial
trajectory with a flyby of Saturn [21] or of Venus [22]. A
microwave was transmitted at about 2.3 GHz from the
spacecraft and was received by earth stations, with an on-
board stable quartz oscillator and a hydrogen maser on
the ground.

The frequency-shift formula presented in this inter-
planetary spacecraft link (in conjunction with the fre-
quency shifts due to the Doppler and the gravitational
effects) looks like (29), except that both speeds vsc and vE

are in a heliocentric inertial frame [21,22]. Thus there is a
discrepancy in the effect of earth’s orbital motion on the
speed vE of the ground station. The linear speed due to
earth’s orbital motion around the Sun is about 30 km/sec,
which is much higher than that due to earth’s rotation.
Thus the frequency shift predicted from the local-ether
model deviates from the calculated result made in [21,22]
by a constant amount of about δf = −11.5 Hz as f0 ' 2.3
GHz. Meanwhile, it is reported that the frequency of the
onboard quartz oscillator tends to shift due to aging. This
frequency shift also contains a constant term with a coeffi-
cient determined by the least-square algorithm [22]. Thus
it seems not appropriate to test the predicted constant
deviation from this experiment. Anyway, according to the
frequency shift given in the form of (29), the reference
frame of the onboard clock has been shown to depend
on the location of the spacecraft. On the other hand, to
determine the reference frame of the ground clock in an
interplanetary microwave link provides a means to test the
local-ether wave equation.
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5.5 Spatial isotropy in Hughes-Drever experiment

In the Hughes-Drever experiment, it has been found that
the transition frequency of an atom or an ion is quite sta-
ble hour by hour and day by day, in spite of earth’s rota-
tional and orbital motions [23]. Similar stability in phase
over propagation path is also found in the fiber-link exper-
iment [24] and the Kennedy-Thorndike experiment [11].
This hourly and daily stability in frequency or phase is
known as the spatial isotropy as the orientation and posi-
tion of the Earth are changing in space.

According to the local-ether model, it is evident that
earth’s orbital motion around the Sun or whatever is not
involved in the speed v of an earthbound particle with re-
spect to an ECI frame. Thus the quantum energy in an
atom is entirely independent of the orbital motion. Fur-
ther, the quantum energy can even be invariant under
earth’s rotation, if the speed v remains a constant dur-
ing the rotation. Such a constant-speed condition is ful-
filled by a geostationary atom, by an atom moving at a
fixed velocity with respect to the ground at a substantially
fixed latitude, or by an atom moving on a circular earth’s
satellite orbit. For an atom satisfying the constant-speed
condition, the energies of quantum states and hence the
transition frequency between two states are invariant un-
der earth’s rotation, whatever the dependence of quantum
energy on speed. The synchronism among the various GPS
clocks can be ascribed to this isotropy. The constant-speed
condition has also been applied in [5] to account for the
aforementioned spatial isotropy in phase.

The transition frequency in the Hughes-Drever experi-
ment is associated with the Zeeman-split energy states due
to the interaction of nuclear spin with an external mag-
netic field [23]. In these experiments, the atoms or ions are
in gaseous or liquid state and their ground velocities are
constant under earth’s rotation in statistics. Therefore,
the local-ether model is in accord with the Hughes-Drever
experiment, whatever the dependence of nuclear magnetic
interaction on mass and speed. A variety of atoms or
ions have been shown to exhibit this isotropy, including
lithium [25], beryllium [26], mercury [27], and neon [28].
It is noticed that in some literature this isotropy is as-
cribed to the local Lorentz invariance [26–28].

6 Conclusion

The matter wave of a particle is supposed to be governed
by the local-ether wave equation incorporating the natu-
ral frequency and the electric scalar potential. The time
derivative in the wave equation is referred specifically to
the local-ether frame, which is a geocentric or a helio-
centric inertial frame, depending on the location of the
particle being earthbound or interplanetary, respectively.
Under the ordinary case of weak potential, a wavefunction
close to a spatial harmonic tends to be close to a tempo-
ral harmonic with the angular frequency combining the
natural frequency and the propagation vector. Then the
local-ether wave equation leads to a first-order time evolu-
tion equation in terms of the reduced wavefunction. From

the evolution equation, it is found that the velocity of a
particle with respect to the local-ether frame is propor-
tional to the spatial rate of change of the wavefunction
and to the inverse of the angular frequency. For a har-
monic wavefunction, the particle velocity is then propor-
tional to the propagation vector. Further, due to the nat-
ural frequency and hence the dispersion of wavefunction,
the angular frequency is equal to the natural frequency
times a speed-dependent factor, which is just the famous
Lorentz mass-variation factor, except the reference frame
of particle speed. As the natural frequency corresponds to
the rest mass of a particle, the angular frequency is then
the speed-dependent mass, aside from a common scaling
factor. These speed-dependent angular frequency, propa-
gation vector, and mass derived from the local-ether wave
equation are in accord with the de Broglie postulates in
conjunction with the Lorentz mass-variation law, except
the reference frame.

Based on Galilean transformations, the time evolution
equation for a particle bounded in a moving atom reduces
to a form which looks like Schrödinger’s equation. How-
ever, the position vector and hence the time derivative are
referred to the atom frame. Moreover, the time deriva-
tive additionally incorporates the mass-variation factor.
Thereby, the energies of the quantum states due to the
electrical scalar potential and hence the transition fre-
quency decrease by this factor. The atomic clock rate
is then expected to decrease with the speed of the clock
by the mass-variation factor, where the speed is referred
specifically to the local-ether frame. When the gravita-
tional effect is taken into account by the perturbation
method, it is seen that the transition frequency and hence
the atomic clock rate also decrease under the gravitational
potential. Thus, according to the local-ether wave equa-
tion, the frequency shifts due to the gravitational and the
mass-variation effects originate from an intrinsic quantum
property of matter wave bounded in atom.

According to the local-ether model, the speeds of
earthbound atoms are referred to an ECI frame. Ob-
viously, this is in accord with the east-west directional
anisotropy in the Hafele-Keating experiment, the synchro-
nism in GPS, and with the spatial isotropy in the Hughes-
Drever experiment. Quantitatively, it has been shown that
the speed- and the gravitation-dependent frequency shifts
are actually in accord with the clock-rate difference in the
Hafele-Keating experiment and the clock-rate adjustment
in GPS. Moreover, for the atomic clock onboard the space-
craft in the earthbound or the interplanetary microwave
link, the local-ether model leads to that the speed in the
mass-variation factor is referred to a geocentric or a he-
liocentric inertial frame, respectively. This switch in refer-
ence frame is in accord with the frequency-shift formulas
adopted in the spacecraft-link experiments. However, for
the atomic clocks at ground stations in both links, the
local-ether model predicts that the speeds are referred
uniquely to an ECI frame. For the interplanetary link,
the prediction leads to a constant deviation from the cal-
culated result of frequency shift reported in the literature.
This constant deviation in frequency shift is yet to be
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verified and then provides a means to test the local-ether
wave equation.
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